Dynamical MEG source modeling with multi-target Bayesian filtering
نویسندگان
چکیده
منابع مشابه
Dynamical MEG source modeling with multi-target Bayesian filtering.
We present a Bayesian filtering approach for automatic estimation of dynamical source models from magnetoencephalographic data. We apply multi-target Bayesian filtering and the theory of Random Finite Sets in an algorithm that recovers the life times, locations and strengths of a set of dipolar sources. The reconstructed dipoles are clustered in time and space to associate them with sources. We...
متن کاملA unified Bayesian framework for MEG/EEG source imaging
The ill-posed nature of the MEG (or related EEG) source localization problem requires the incorporation of prior assumptions when choosing an appropriate solution out of an infinite set of candidates. Bayesian approaches are useful in this capacity because they allow these assumptions to be explicitly quantified using postulated prior distributions. However, the means by which these priors are ...
متن کاملAlgorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal like...
متن کاملSource Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches
Electro- and magnetoencephalography allow for non-invasive investigation of human brain activation and corresponding networks with high temporal resolution. Still, no correct network detection is possible without reliable source localization. In this paper, we examine four different source localization schemes under a common Variational Bayesian framework. A Bayesian approach to the Minimum Nor...
متن کاملMEG source localization under multiple constraints: an extended Bayesian framework.
To use Electroencephalography (EEG) and Magnetoencephalography (MEG) as functional brain 3D imaging techniques, identifiable distributed source models are required. The reconstruction of EEG/MEG sources rests on inverting these models and is ill-posed because the solution does not depend continuously on the data and there is no unique solution in the absence of prior information or constraints....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Human Brain Mapping
سال: 2009
ISSN: 1065-9471,1097-0193
DOI: 10.1002/hbm.20786